This tiny country feeds the world sustainably

This tiny country feeds the world sustainably

The Netherlands is a small, densely populated country, with more than 1,300 inhabitants per square mile. It’s bereft of almost every resource long thought to be necessary for large-scale agriculture. Yet it’s the globe’s number two exporter of food as measured by value, second only to the United States, which has 270 times its landmass.

How has the Netherlands achieved this?

Around 20 years ago, the Dutch made a national commitment to sustainable agriculture under the slogan, “Twice as much food using half as many resources.” Since 2000, many farmers have reduced dependence on water for key crops by as much as 90 percent. They’ve almost completely eliminated the use of chemical pesticides on plants in greenhouses.

Banks of what appear to be gargantuan mirrors stretch across the countryside, glinting when the sun shines and glowing with eerie interior light when night falls. They are Holland’s extraordinary greenhouse complexes, some of them covering 175 acres.

These climate-controlled farms enable a country located a scant thousand miles from the Arctic Circle to be a global leader in exports of a fair-weather fruit: the tomato. The Dutch are also the world’s top exporter of potatoes and onions and the second largest exporter of vegetables overall in terms of value. More than a third of all global trade in vegetable seeds originates in the Netherlands.

An example of the Dutch farms’ productivity is that the global average yield of potatoes per acre is about nine tons. The Dutch fields can reliably produce more than 20.

Inside a Dutch greenhouse farm

The brain trust behind these astounding numbers is centered at Wageningen University & Research (WUR), located 50 miles southeast of Amsterdam. Widely regarded as the world’s top agricultural research institution, WUR is the nodal point of Food Valley, an expansive cluster of agricultural technology start-ups and experimental farms. The name is a deliberate allusion to California’s Silicon Valley, with Wageningen emulating the role of Stanford University in its celebrated merger of academia and entrepreneurship.

By 2050, the Earth will be home to as many as 10 billion people, up from today’s 7.5 billion. If massive increases in agricultural yield are not achieved, matched by massive decreases in the use of water and fossil fuels, a billion or more people may face starvation. Hunger could be the 21st century’s most urgent problem, and the visionaries working in Food Valley believe they have found innovative solutions. The wherewithal to stave off catastrophic famine is within reach, Ernst van den Ende, managing director of WUR’s Plant Sciences Group, insists. His optimism rests on feedback from more than a thousand WUR projects in more than 140 countries and on its formal pacts with governments and universities on six continents to share advances and implement them.

At every turn in the Netherlands, the future of sustainable agriculture is taking shape—not in the boardrooms of big corporations but on thousands of modest family farms. You see it vividly in the terrestrial paradise of Ted Duijvestijn and his brothers Peter, Ronald, and Remco.

At the Duijvestijns’ 36-acre greenhouse complex near the old city of Delft, visitors stroll among ranks of deep green tomato vines, 20 feet tall. Rooted not in soil but in fibers spun from basalt and chalk, the plants are heavy with tomatoes—15 varieties in all—to suit the taste of the most demanding palate. In 2015 an international jury of horticultural experts named the Duijvestijns the world’s most innovative tomato growers.

Tomatoes grown under ideal conditions in one of the Netherland’s greenhouses

Since relocating and restructuring their 70-year-old farm in 2004, the Duijvestijns have declared resource independence on every front. The farm produces almost all of its own energy and fertilizer and even some of the packaging materials necessary for the crop’s distribution and sale. The growing environment is kept at optimal temperatures year-round by heat generated from geothermal aquifers that simmer under at least half of the Netherlands.

The only irrigation source is rainwater, says Ted, who manages the cultivation program. Each kilogram of tomatoes from his fiber-rooted plants requires less than four gallons of water, compared with 16 gallons for plants in open fields. Once each year the entire crop is regrown from seeds, and the old vines are processed to make packaging crates. The few pests that manage to enter the Duijvestijn greenhouses are greeted by a ravenous army of defenders such as the fierce Phytoseiulus persimilis, a predatory mite that shows no interest in tomatoes but gorges itself on hundreds of destructive spider mites.

Two boys play on mountains of potatoes grown on their family’s ultra-productive farm, which yields twice the global average. The reason? Drones and other tools assess the health of individual plants and determine exactly how much water and nutrients they need to thrive.

The search for answers to a life-or-death question gave rise to one of the Netherlands’ most innovative companies. Half a century ago, Jan Koppert was growing cucumbers on his land and using toxic chemical sprays to fend off pests. When a physician declared him allergic to pesticides, Koppert set out to learn all he could about the natural enemies of insects and arachnids.

Today Koppert Biological Systems is the global pacesetter in biological pest and disease control, with 1,330 employees and 26 international subsidiaries marketing its products in 96 countries. Koppert’s firm can provide you with cotton bags of ladybug larvae that mature into voracious consumers of aphids. Or how about a bottle containing 2,000 of those predatory mites that hunt down spider mites on plants and suck them dry? Or a box of 500 million nematodes that mount deadly assaults on fly larvae that prey on commercial mushrooms?

Koppert’s legions make love as well as war, in the guise of enthusiastic bumblebees. No form of artificial pollination matches the efficiency of bees buzzing from flower to flower, gathering nectar to nourish their queen and helping to fertilize the ovaries of plants along the way. Each Koppert hive accounts for daily visits to half a million flowers. Farmers using the bees typically report 20 to 30 percent increases in yields and fruit weight, for less than half the cost of artificial pollination.

Ruud Veloo monitors an experimental “photobioreactor” at Wageningen University & Research (WUR)’s AlgaePARC. Light fuels the growth of microalgae, which are used to produce proteins and lipids, the basis of many food chains.

Nowhere is the Netherlands’ agricultural technology more cutting-edge than in the embryonic organism in which most food is literally rooted: seeds. And nowhere are the controversies that surround the future of agriculture more heated. Chief among them is the development of genetically modified organisms to produce larger and more pest-resistant crops.

Dutch firms are among the world leaders in the seed business, with close to $1.7 billion worth of exports in 2016. Yet they market no GMO products. A new seed variety in Europe’s heavily regulated GMO arena can cost a hundred million dollars and require 12 to 14 years of research and development. By contrast, the latest achievements in the venerable science of molecular breeding—which introduces no foreign genes—can deliver remarkable gains in five to 10 years, with development costs as low as $100,000 and seldom more than a million dollars. It is a direct descendant of methods employed by farmers in the Fertile Crescent 10,000 years ago.

Rijk Zwaan, a Dutch breeder, offers high-yield seeds in more than 25 broad groups of vegetables, many that defend themselves naturally against major pests. Heleen Bos is responsible for the company’s organic accounts and international development projects. Like many of the entrepreneurs at Food Valley firms, Bos has worked in the fields and cities of the world’s poorest nations. With lengthy postings to Mozambique, Nicaragua, and Bangladesh over the past 30 years, she knows that hunger and devastating famine are not abstract threats.

“Of course, we can’t immediately implement the kind of ultrahigh-tech agriculture over there that you see in the Netherlands,” she says. “But we are well into introducing medium-tech solutions that can make a huge difference.” She cites the proliferation of relatively inexpensive plastic greenhouses that have tripled some crop yields compared with those of open fields, where crops are more subject to pests and drought.

Since 2008 Rijk Zwaan has supported a breeding program in Tanzania at a 50-acre trial field in the shadow of Mount Kilimanjaro. Its seeds are sent to Holland for quality control tests on germination rates, purity, and resistance to pests and diseases. Collaborative projects are under way in Kenya, Peru, and Guatemala. “We try to develop seeds for their specific conditions,” Bos says. But the starting point, she adds emphatically, cannot be the sort of top-down approach that has doomed many well-meaning foreign aid projects.

“We have constant, tremendously important conversations with the small growers themselves—on their needs, on the weather and soil conditions they face, on costs,” she says.

The scale of greenhouse farms is vast

WUR’s Rudy Rabbinge, professor emeritus of sustainable development and food security, took up the cause when he helped devise extensive changes in the faculty, student body, and curriculum that transformed the institution into what he calls “a university for the world, and not simply for the Dutch.” Today a hefty share of the academic and research activities at WUR are focused on problems facing poor nations.

Some 45 percent of its graduate students—including nearly two-thirds of all Ph.D. candidates—are recruited abroad, representing more than a hundred nations. Asians, led by Chinese and Indonesians, outnumber almost all non-Dutch Europeans combined. WUR alumni are found in the highest echelons of agricultural ministries across Africa, Asia, and Latin America.

Less than 5 percent of the world’s estimated 570 million farms have access to a soil lab. That’s the kind of number the Dutch see as a challenge.

“What does our work mean for developing countries? That question is always raised here,” says Martin Scholten, who directs WUR’s Animal Sciences Group. “It’s part of every conversation.”

Comments are closed.
Want to find out more?
Join My Newsletter
Get regular updates on all things eco directly to your inbox.
Give it a try, you can unsubscribe anytime.
Share this Awesome Stuff with your Friends!